

Defense Energy Conference

US Navy & US Marine Corps Energy Policy Procurement and Technology Washington, DC

February 9, 2011

Ocean Power Technologies - History

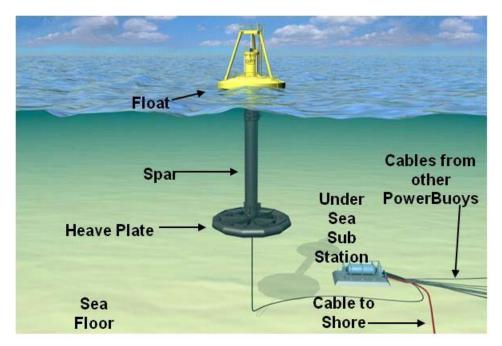
- **1994** Began operations in Pennington, New Jersey
- 1995Awarded 1st SBIR Contract from Office of Naval Research to
develop a PowerBuoy for AUV recharging at sea
- 1997Began ocean testing of PowerBuoy at LEO-15 site (US Navy &
Rutgers University) in New Jersey
- **1998 To Present** Continued development and ocean testing for ONR, NAVFAC, and NAVSEA of PowerBuoys in the Atlantic (New Jersey) and Pacific Oceans (Washington State and Hawaii)
- **2007 To Present** Began commercialization of PB40 and PB150 PowerBuoy for utility grid connected power and autonomous (non-grid) applications

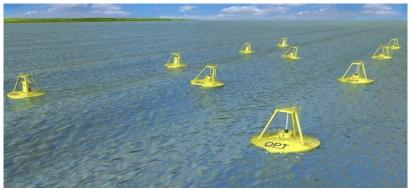
Ocean Power Technologies

Tuckerton, New Jersey 2005-2006; 2007-2009

OPT PowerBuoy deployed for Iberdrola in Spain 2008

Marine Corp Base Hawaii June 2007




Marine Corp Base Hawaii Dec 2009

- Headquarters Pennington, NJ
- Focus on electrical power generation from ocean waves
- Over 10 years experience in producing electrical power from ocean waves
- Ocean-tested and proprietary technology – 45 Patents issued & 11 pending
- Listed on Nasdaq
- Developing large wave parks for utility applications
- Developing autonomous PowerBuoys for Navy non-grid connected maritime security applications

The PowerBuoy

- Buoy structure based on maritime industry design certified by Lloyd's Register
- Moveable float on stationary spar follows waves to produce electricity
- Patented electronic tuning system optimizes power output by matching generator impedance to wave impedance on a wave-by-wave basis
 - Output collected in undersea substation for transmission to shore
 - Scalable and modular for MW-sized wave parks

Wave Energy and the Advantages of OPT's Systems

Wave energy is the most concentrated form of renewable energy:

- Widespread throughout the US, U.K., Europe & other parts of the world
- Close to population centers and hence the grid
- Predictable & dependable, and can be fed into the power grid
- Relatively small "footprint" an OPT wave power station requires only one-tenth the area of wind power station of comparable capacity

Using OPT's PowerBuoy® technology to convert wave energy to electrical energy has several advantages:

- Load factor of 30-45% versus solar and wind load factors of 10%-35%
- Environmentally benign & non-polluting
- No exhaust gases, no noise, minimal visibility from shore, safe for sealife
- Scalable to high capacity power stations (100MW+)
- Targeted to be cost competitive with fossil fuel (without subsidies)

PowerBuoy Applications

1. POWER FOR THE UTILITY GRID

- Large arrays of PB150's, graduating to PB500's
- Grid connected
- Produce wave power stations ranging in size from 5 MW up to 100's of MW

Customers:

- US Navy and other DoD bases
- Commercial utilities and independent power producers

Site of Navy project in Hawaii

Wave Energy Technology (WET) Program at Marine Corps Base Hawaii & PB40 PowerBuoy

First grid-connected wave energy system in the U.S.

Accomplishments Working with the Navy

- Advanced PB40 PowerBuoy operating since mid-Dec 2009
- Survived severe storms
- Confirmed OPT's predictive models of power characteristics vs. wave climate
- Validated design for PB150 and PB500 larger buoys

Third Party Commercial Validation

- Independent Environmental Assessment in Hawaii under direction of US Navy – "Finding of No Significant Impact"
- Grid connection certified by Intertek (IEEE standards)
- Certification by Lloyd's Register of PB150 structure and mooring system
- Insured by Lloyd's syndicates for over 10 years for property loss and third party liability

OPT Cable Laying at MCBH

Hawaii PowerBuoy

Laying Submarine Cable

Landing Cable at Beach OCEAN POWER TECHNOLOGIES

PowerBuoy Deployment at MCBH

Environment & Permitting

- OPT is Leader in wave energy permitting: Hawaii, Oregon, Australia
- Proactive Approach
 - Sensitive to regional concerns
 - "Do it right"
 - Appreciation of commercial time frame
- Two stage permitting process
 - 1) Community Involvement
 - Identify stakeholders
 - Inclusive constructive dialog
 - Consensus-based process
 - "Settlement Agreement"
 - 2) FERC Licensing
 - Will be first in USA
 - Currently in last stage of achieving FERC License for Wave Power Station in Oregon

PowerBuoy Applications Continued

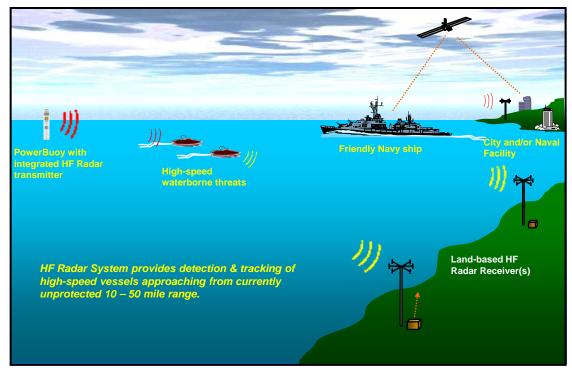
2. AUTONOMOUS APPLICATIONS

 Individual and small non-grid connected arrays – sizes range from 10 watts to 40 kilowatts

Customers:

 US Navy and Homeland Security Maritime Surveillance and ocean based communications Examples: LEAP (NUWC), TOME (NRL), MicroBuoy (NAVSEA)

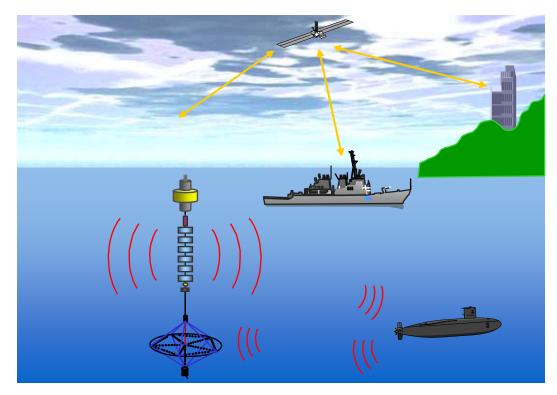
Commercial Applications:


- Desalination
- Off-shore Platforms
- Open Ocean Aquaculture
- Oceanography
- Ocean Based Communications

OPT's PowerBuoy deployed 30 miles offshore for US Navy Test September 2004

Littoral Expeditionary Autonomous PowerBuoy (LEAP) Program

Mission:


Persistent, dependable, longterm operation of a surveillance network to provide operational surface vessel tracking capabilities to prevent attacks from small, high-speed vessels

Persistent Ocean Surveillance System

- OPT & Rutgers provide vessel detection for persistent maritime security
 - OPT PowerBuoy[®] wave energy converter
 - Rutgers Coastal Ocean Observation Lab
 - Rutgers advanced vessel detection & tracking software
 - CODAR Ocean Sensors HF Radar
 - Mikros Systems shipboard and communications expertise

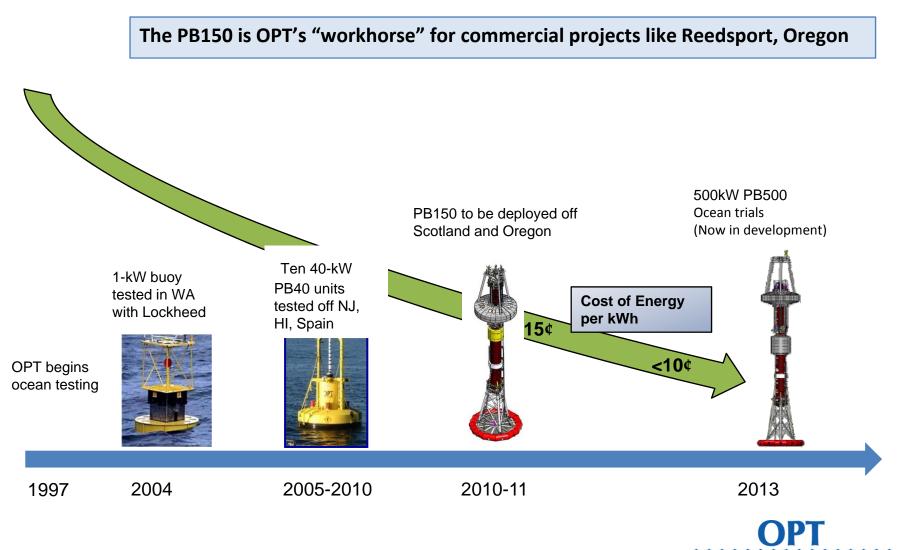
Deep Water Autonomous Deployable System

DWADS Anti-Submarine Warfare (ASW) Program

- Unmanned, unattended, highpower system
- Provide wide area search and protection of Sea Base in very deep water without anchoring
- OPT PowerBuoy provides power for station keeping & supplemental power to arrays and communications
- OPT demonstrated power during initial Oct 2008 ocean test 30 miles off New Jersey coast

MicroBuoy Compact Wave Energy Converter

Demo unit ocean test – May 2008


MicroBuoy technology can be embedded in other devices

Communications Relay PowerBuoy

- Enables communications with submarine while submerged and traveling
- Wave energy harvesting contained in hermetically sealed Buoy
- Wave action forces Buoy up and down
- Tuned internal oscillator maximizes wave energy capture
- Scalable up from 3-inch diameter
- Free floating or moored

Growth Path to Commercial Success

OCEAN POWER TECHNOLOGIES

Current OPT Wave Energy Projects

Contact Information

Dr. George W. Taylor

gtaylor@oceanpowertech.com

Ocean Power Technologies, Inc.

1590 Reed Road

Pennington, NJ 08534

609-730-0400 x- 210

Website: www.oceanpowertechnologies.com

